Topics in the June 2012 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2012-J-2:

• Nuclear and Radiation Chemistry

2012-J-3:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Lewis Structures
- VSEPR

2012-J-4:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Shape of Atomic Orbitals and Quantum Numbers
- Filling Energy Levels in Atoms Larger than Hydrogen

2012-J-5:

• Band Theory - MO in Solids

2012-J-6:

- Bonding MO theory (H₂)
- Bonding MO theory (larger molecules)

2012-J-7:

- Lewis Structures
- VSEPR

2012-J-8:

- First and Second Law of Thermodynamics
- Gas Laws

2012-J-9:

- Thermochemistry
- Nitrogen Chemistry and Compounds
- Nitrogen in the Atmosphere

2012-J-10:

• Chemical Equilibrium

2012-J-11:

- Thermochemistry
- First and Second Law of Thermodynamics

2012-J-12:

- Thermochemistry
- First and Second Law of Thermodynamics
- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2012-J-13:

• Electrochemistry

2012-J-14:

- Electrochemistry
- Batteries and Corrosion

2012-J-15:

• Types of Intermolecular Forces

2205(a)

THE UNIVERSITY OF SYDNEY

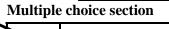
CHEMISTRY 1A - CHEM1101

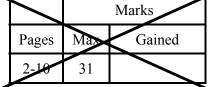
CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2012

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

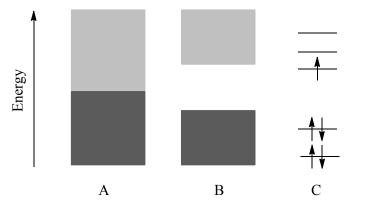
INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 23 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 18, 22, 25 and 28 are for rough working only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gaine	d	Marker
11	6			
12	6			
13	4			
14	5			
15	6			
16	6			
17	5			
19	4			
20	4			
21	4			
23	4			
24	5			
26	6			
27	4			
Total	69			
Check	total			

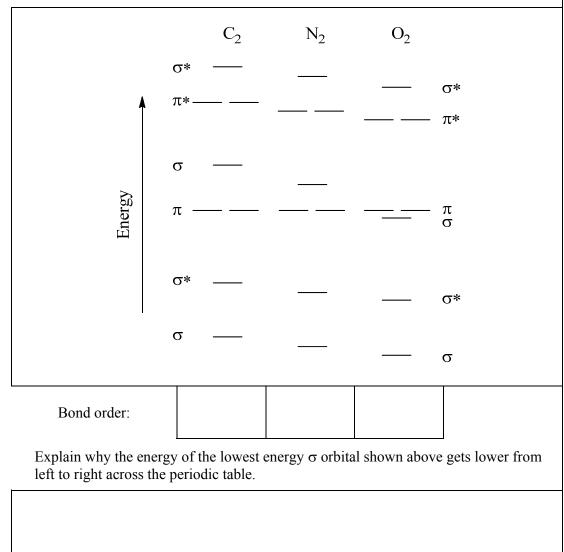

•	On the 6 th of April 2011, after the earthqu in seawater were recorded at 7.5×10^6 tim 8.02 days. How long will it take for the ra- to fall back to the legal limit?	ake and tsunami in Japan, levels of ¹³¹ I hes the legal limit. The half-life of ¹³¹ I is adioactivity of the initially sampled seawater	Marks 6
		[
		Answer:	
	Why is the ¹³¹ I nucleus unstable?		
	Write a balanced equation for a likely dec	ay mechanism of ¹³¹ I.	
	Another significant seawater contaminant has a half-life of 30 years. If you were ex isotopes for 1 hour, which isotope, ¹³⁷ Cs o your reasoning.	detected after the tsunami was ¹³⁷ Cs, which posed to equal concentrations of both or ¹³¹ I, would do more damage? Explain	

• Explain the physical significance of the square of the wavefunction, ψ^2 .	Marks 2
• The σ -bonding in two plausible structures of ozone, O ₃ , is shown below. Complete each structure by adding electrons and/or π -bonds as appropriate.	4
Predict the geometry of ozone? Give reasons for your answer.	

• The "Paschen" series of emission lines corresponds to emission from higher ly energy states to the $n = 3$ state in hydrogen-like atoms. Calculate the waveleng (in nm) of the lowest energy "Paschen" emission line in Li ²⁺ .	ing darks 4
Answer:	
What are the possible <i>l</i> states for the $n = 4$ level of Li ²⁺ ?	
Sketch the atomic orbital with $n = 3$ and the lowest value of <i>l</i> .	

Page Total:

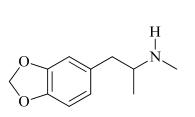
• The diagram below shows the band structure of two solid elements, A and B. Dark grey denotes filled electron energy levels, light grey denotes unfilled levels. Also shown are the atomic energy levels (valence electron orbitals only) of another element, C.



Describe the electrical properties of elements A and B, explaining your reasoning.

If a small amount of element C is deliberately added to each of A and B, describe what effect this will have on the electrical properties of each. Give reasons.

• The following diagram shows the molecular orbital energy level diagrams for the valence electrons in the homonuclear diatomic molecules C₂, N₂ and O₂.


Complete the diagram by filling in the remaining *valence* electrons for each molecule and determining its bond order.

Clearly label the HOMO and LUMO of O₂ on the diagram above.

3

- Marks • The stick representation of 3,4-methylenedioxy-*N*-methylamphetamine ("ecstasy") is shown in the box below.
 - (a) Identify clearly with asterisks (*) ALL the carbon atoms that have a tetrahedral geometry.
 - (b) Circle all the CH₃ groups.

Name the N-containing functional group in ecstasy.

• Complete the following table. The central atom is underlined. Carbon dioxide is given as an example.

3

Molecule	Lewis structure	Shape of molecule
<u>C</u> O ₂	;o=c=o;	linear
<u>P</u> Br ₃		
<u>S</u> O ₂		

Marks • Explain why quartz, SiO₂(s), does not spontaneously decompose into silicon and 2 oxygen at 25 °C, even though the standard entropy change of the reaction is large and positive. $\Delta S^{\circ} = 164 \text{ J K}^{-1} \text{ mol}^{-1}$ $SiO_2(s) \rightarrow Si(s) + O_2(g)$ • The equation for the detonation of nitroglycerine, $C_3H_5N_3O_9(1)$, is given below. 3 $4C_{3}H_{5}N_{3}O_{9}(1) \rightarrow 6N_{2}(g) + 12CO_{2}(g) + 10H_{2}O(g) + O_{2}(g)$ What mass of nitroglycerine is required to produce 1000 L of product gases at 2000 °C and 1.00 atm? Assume all gases behave as ideal gases. Show all working. Answer:

Marks • A 2.5 kg block of aluminium is heated to 80.0 °C and then placed into a thermally 3 insulated water bath consisting of 10.0 L of water at 25.0 °C. Calculate the final temperature of the water once equilibrium has been reached. Show all working. Data: Specific heat capacity of Al(s) is 0.900 J $g^{-1} K^{-1}$. Specific heat capacity of H₂O(l) is 4.184 J $g^{-1} K^{-1}$. The density of water is 1 g mL⁻¹. Answer: • Provide a brief explanation of the term "nitrogen fixation". 1

• Consider the following reaction.

4

consider the following reaction.

 $SO_2(g) + NO_2(g) \implies SO_3(g) + NO(g)$

An equilibrium mixture in a 1.00 L vessel was found to contain $[SO_2(g)] = 0.800$ M, $[NO_2(g)] = 0.100$ M, $[SO_3(g)] = 0.600$ M and [NO(g)] = 0.400 M. If the volume and temperature are kept constant, what amount of NO(g) needs to be added to the reaction vessel to give an equilibrium concentration of NO₂(g) of 0.300 M?

Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

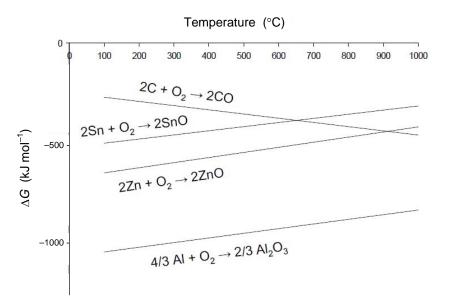
• In a process called pyrolysis, a hydrocarbon fuel is partially dehydrogenated to produce hydrogen gas, which can then be combined with oxygen to produce water. Using ethane C₂H₆ as the fuel, the overall process is described by the following balanced equation:

$2C_2H_6(g) + O_2(g) \rightarrow 2C$	$_{2}H_{4}(g) + 2H_{2}O(l)$
--------------------------------------	-----------------------------

Data:	Compound	$H_2O(l)$	$C_2H_6(g)$	$C_2H_4(g)$	$CO_2(g)$	CO(g)
	$\Delta_{\rm f} H^{\rm o} / {\rm kJ} {\rm mol}^{-1}$	-285.9	-84.67	52.28	-393.5	-110.5

Using heats of formation, calculate the heat of reaction per mole of ethane consumed in the reaction described above.

Answer:


Simply burning ethane in oxygen to produce carbon dioxide and water releases 1560 kJ per mole of ethane consumed. Provide a brief explanation of the difference between the heats of combustion and the pyrolysis-based process described above.

Briefly describe one environmental benefit of using the pyrolysis-based process for energy production.

Marks

4

• The diagram below represents the Gibbs Free energy change associated with the formation of 4 different oxides.

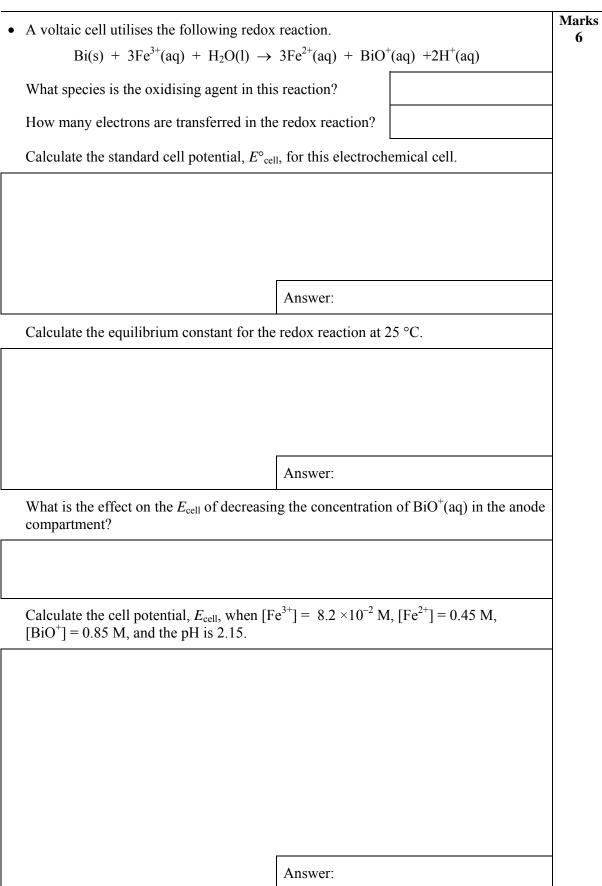
Using the free energy data above, write down the equation and indicate with an arrow the direction of the expected spontaneous reaction under the following conditions. If you think no reaction would occur, write "no reaction".

a) C and SnO are mixed at 400 °C

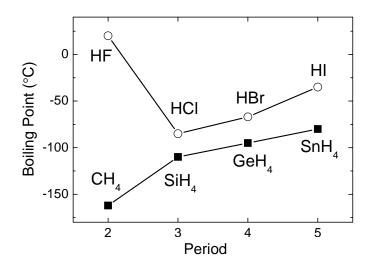
b) C and SnO are mixed at 900 °C

c) SnO, Sn, Zn and ZnO are mixed at 900 °C

Of the 4 oxide formation reactions, write down <u>one</u> for which the entropy change is <u>negative</u>. Provide a brief explanation for your choice.


Consider a voltaic cell in which oxidation of Cr to Cr³⁺ by O₂ in the presence of acid occurs. Write the half-reaction that occurs at each electrode and the overall balanced redox reaction.

Reaction at anode	
Reaction at cathode	
Overall	
balanced	
reaction	


• Is O₂ a stronger oxidizing agent under acidic or basic conditions? Give reasons for your answer.

2

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• The figure below shows the boiling points of Group 14 and Group 17 hydrides as a function of the period (row) of the periodic table.

It is apparent from this figure that:

- the tetrahydrides have lower boiling points than the monohydrides,

- the boiling points increase with period, with the exception of HF.

Explain these features.

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	mal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$\Delta \mathbf{H}^{+}(\mathbf{x}) + \mathbf{A}^{-}(\mathbf{x}) + \mathbf{A}^{-}(\mathbf{x})$	
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 2e^{-} \rightarrow Fe(s)$	0 (by definition) -0.04
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \end{array}$
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \end{array}$
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2^{+}}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \end{array}$
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Al(s)$ $Sc^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2^{+}}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$

CHEM1101 - CHEMISTRY 1A

Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{1000} \log Q \text{ (at 25 °C)}$							
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	n							
Acids and Bases	Gas Laws							
$pH = -log[H^+]$	PV = nRT							
$pK_{\rm w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Radioactivity	Kinetics							
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$							
$A = \lambda N$	$k = A e^{-E_a/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
Colligative Properties & Solutions	Thermodynamics & Equilibrium							
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$\mathbf{c} = k\mathbf{p}$	$\Delta G^{\circ} = -RT \ln K$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$							
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2							
$L = 4\pi\varepsilon_0 r^{V_{\rm A}}$	Surface area of sphere = $4\pi r^2$							

Useful formulas

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нешим Не 4.003
3 LITHIUM	4 BERYLLIUM											5 BORON	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Linnow	Be											BORD	C	NIROGEN	ONIGEN	F	Ne
6.941	9.012											10.8	12.01	14.01	16.00	19.00	20.18
11	12 magnesium											13	14	15	16	17	18
Na	MAGNESIUM											ALUMINI	M SILICON	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31					-				-		26.9		30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30		32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC		i germanium Ger	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3			74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48		50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	ZIRCONIUM	NIOBIUM Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	palladium Pd	SILVER Ag	САДМИ		Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.4			121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80		82	83	84	85	86
CAESIUM CS	barium Ba		HAFNIUM Hf	TANTALUM Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM PL	GOLD Au	MERCU Hg		M LEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.	,		208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109	110	111	112						
FRANCIUM Fr	radium Ra		RUTHERFORDIUM Rf	DUBNIUM Db	seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt	DARMSTADTIUM DS	ROENTGENIUM Rg							
[223.0]	[226.0]		[261]	[262]	[263]	[264]	[265]	[268]	[281]	[272]	[285						
																-	
	5		58	59	60	61	62	63	64		55	66	67	68	69	70	71
LANTHANOI	DS LANTE		CERIUM PR	ASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLI		вим Г b	DYSPROSIUM Dy	ногмим Но	ERBIUM Er	THULIUM Tm	YTTERBIUM Yb	LUTETIUM
	138			140.91	144.24	[144.9]	150.4	151.96			8.93	162.50	164.93	167.26	168.93	173.04	174.97
		9	90	91	92	93	94	95	96	5 9	97	98	99	100	101	102	103
ACTINOID	S ACTI		THORIUM PI	ROTACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIU: Am			ellium Bk	CALIFORNIUM Cf	EINSTEINIUM Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM NO	LAWRENCIUM
	[22			[231.0]	238.03	[237.0]	[239.1]	[243.1			7.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

2205(b)